[11:00] Connection between convolution and probability distributions

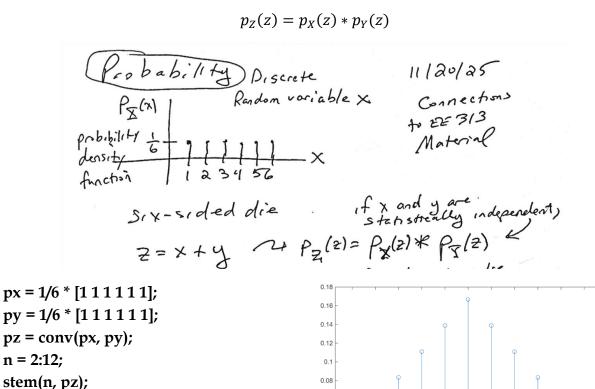
Example: 6-sided die (discrete uniform distribution)

Let X and Y be random variables representing the outcome of rolling two six-sided dice

$$P_X(x) = \begin{cases} 1/6 & x \in \{1,2,3,4,5,6\} \\ 0 & \text{otherwise} \end{cases}$$

$$P_Y(y) = \begin{cases} 1/6 & y \in \{1,2,3,4,5,6\} \\ 0 & \text{otherwise} \end{cases}$$

If X and Y are statistically independent, the probability density function of the random variable of Z = X + Y is the convolution



0.08 0.06 0.04

[11:10] LTI Systems and continuous time convolution

Review from Lecture 12: The Dirac delta is defined by two properties:

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1 \tag{Unit area}$$

$$\int_{-\infty}^{\infty} g(t)\delta(t) dt = g(0)$$
 (Sifting property)

Using a substitution of variables, the sifting property for a delayed Dirac delta becomes

$$\int_{-\infty}^{\infty} g(t)\delta(t-T)dt = g(T) \qquad \text{(Sifting property for } \delta(t-T))$$

$$Dirac Delta \delta(t) \quad \text{Impulsive Event in CT}$$

$$1. \quad \int_{-\infty}^{\infty} \delta(t) dt = 1 \quad \text{Unit Area}$$

$$2. \quad \int_{-\infty}^{\infty} g(t) \delta(t) dt = g(0) \quad \text{Sift/Sample}$$

$$Model \quad \delta(t) \quad \text{(1)}$$

$$\delta_{\varepsilon}(t) \quad \frac{1}{2\varepsilon} \quad t$$

For a continuous-time LTI system, the response to an impulse (Dirac delta) uniquely characterizes the system. The output is the convolution of the input and the impulse response:

$$\underbrace{y(t)}_{\text{output of impulse input}} = \underbrace{\underbrace{h(t)}_{t} * \underbrace{x(t)}_{t}}_{\text{input}} = \int_{\tau=-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
UTI system response

Example (gain) $y(t) = a_0 x(t), a_0 \neq 0$

$$\mathcal{S}\{ax(t)\} = a_0\big(ax(t)\big), \qquad a\mathcal{S}\{x(t)\} = a\big(a_0x(t)\big)$$

$$\mathcal{S}\{ax(t)\} = a\mathcal{S}\{x(t)\} \qquad \text{(homogeneity)}$$

$$\mathcal{S}\{x_1(t) + x_2(t)\} = a_0(x_1(t) + x_2(t)), \qquad \mathcal{S}\{x_1(t)\} + \mathcal{S}\{x_2(t)\} = a_0x_1(t) + a_0x_2(t)$$

$$\{x_1(t) + x_2(t)\} = \mathcal{S}\{x_1(t)\} + \mathcal{S}\{x_2(t)\} \qquad \text{(additivity)}$$

$$\mathcal{S}\{x(t - t_0)\} = a_0x(t - t_0), \qquad \mathcal{S}\{x(\tau)\}|_{\tau = t - t_0} = a_0x(\tau)|_{\tau = t - t_0}$$

$$\mathcal{S}\{x(t - t_0)\} = \mathcal{S}\{x(\tau)\}|_{\tau = t - t_0} \qquad \text{(time invariance)}$$

If the input is an impulse $\delta(t)$, then the output is $h(t) = a_0 \delta(t)$

$$y(t) = h(t) * x(t) = \int_{\tau=-\infty}^{\infty} a_0 \delta(\tau) x(t-\tau) d\tau = a_0 x(t)$$
sifting property

(Gain Block Slide 13-4

$$x(t) \quad y(t) = a_0 \times (t) \quad (a_0 \text{ is a})$$

$$x(t) \quad y(t) = a_0 \times (t) \quad (a_0 \text{ is a})$$

$$x(t) \quad y(t) = a_0 \times (t) \quad (a_0 \text{ is a})$$

$$x(t) \quad y(t) = a_0 \times (t) \quad (a_0 \text{ is a})$$

$$x(t) \quad y(t) = a_0 \times (t) \quad (a_0 \text{ is a})$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x(t) \quad x(t) \quad x(t) = a_0 \cdot x(t)$$

$$x$$

Example (delay) y(t) = x(t - T), T is the delay in seconds

If the system were a long wire, the length of the wire is $L = \alpha c T$ where $c = 3 \times 10^8$ m/s and the speed of electrons along the wire is αc . Along the wire at each point in space, there is a voltage and a current.

Initial Conditions. If we start observing at time t = 0, we have to wait T seconds until the input signal arrives on the output. In the meantime, we observe initial conditions present along the long wire connecting the input to the output in the system:

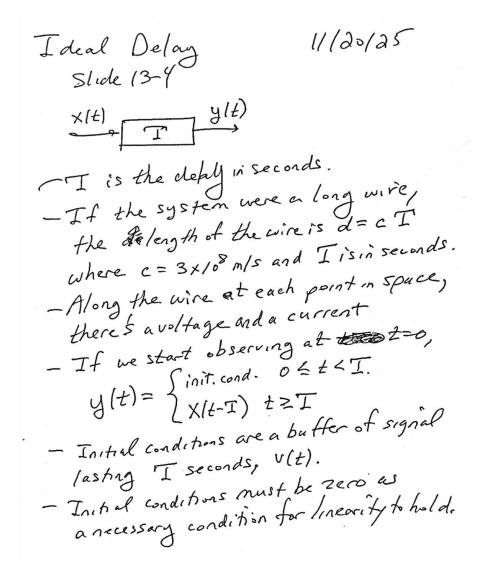
$$y(t) = \begin{cases} \text{initial conditions} & 0 \le t < T \\ x(T) & t \ge T \end{cases}$$

In lab, we enforce initial conditions to be zero by grounding the wire for *T* seconds or to be near zero by applying a very low voltage for *T* seconds.

When observing for all time, we don't have to worry about the initial conditions.

Impulse Response. Input $\delta(t)$ for $-\infty < t < \infty$; impulse response is $h(t) = \delta(t - T)$.

$$y(t) = x(t) * h(t) = \underbrace{\int_{\tau = -\infty}^{\infty} \delta(\tau - T) x(t - \tau) d\tau = x(t - T)}_{\text{sifting property}}$$



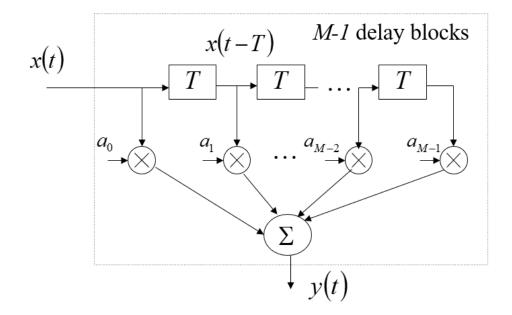
[11:50] Integrator and tapped delay line

Example (integrator) $y(t) = \int_{\tau=-\infty}^{t} x(t) d\tau$

The response to an impulse $\delta(t)$ is h(t) = u(t)

$$y(t) = x(t) * h(t) = \int_{\tau = -\infty}^{\infty} x(\tau) \underbrace{u(t - \tau)}_{\substack{0 \text{ if } t < \tau \\ 1 \text{ if } t \ge \tau}} d\tau = \int_{\tau = -\infty}^{t} x(t) d\tau$$

Example (tapped delay line) $y(t) = a_0 \delta(t) + a_1 \delta(t - T) + \dots + a_{M-1} \delta(t - (M-1)T)$



When the input is an impulse $\delta(t)$, the output is $h(t) = \sum_{m=0}^{M-1} a_m \delta(t - mT)$

[12:00] Continuous-time convolution (graphical method)

Sometimes called "flip and slide" convolution

$$f_1(t) * f_2(t) = \underbrace{\int_{\tau = -\infty}^{\infty} \underbrace{f_1(\tau) f_2(\underbrace{t}_{\text{shift}} \underbrace{-\tau}_{\text{flip}})}_{\text{shy t}} d\tau$$

When convolving two finite-length signals, we can divide the output into 5 cases:



Partial overlap −2 ≤ t < 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Full overlap $0 \le t < 2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Partial overlap 2 ≤ t < 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
No overlap $t \ge 4$	